TRIDONIC

in-track fixed output

Driver LC 42W 900-1050mA flexC T SNC3

Product description

- Constant current / in-track LED driver
- Optional accessory ACU ALU NIPPLE M10x1 for mounting the luminaire head
- Compatible 3-phase system tracks, see data sheet chapter 3.8
- For luminaires of protection class II
- Temperature protection as per EN 61347-2-13 C5e
- Selectable fixed output current via DIP switch $1,050,1,000,950$ and 900 mA
- Max. output power 42 W
- Up to 86 \% efficiency
- Nominal lifetime up to 100,000 h
- 5 years guarantee (conditions at www.tridonic.com)

Housing properties

- Casing: polycarbonat, black, white or grey
- Type of protection IP20

Functions

- Overload protection
- Short-circuit protection
- No-load protection

Typical applications

- For spot light in retail and hospitality application

\longrightarrow

Standards, page 4
Wiring diagrams and installation examples, page 4

Black (RAL 9005)

White (RAL 9010)

Grey (RAL 7035)

TRIDONIC

易 RoHS

LED driver
in-track fixed output

Driver LC 42W 900-1050mA flexC T SNC3
essence in-track series (3-phase system)

Technical data

Rated supply voltage	220-240V
AC voltage range	198-264 V
Max. input current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	0.22 A
Leakage current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< $450 \mu \mathrm{~A}$
Touch current (equipotential connected) ${ }^{(1)}$	$<450 \mu \mathrm{~A}$
Mains frequency	$50 / 60 \mathrm{~Hz}$
Overvoltage protection	$320 \mathrm{~V} \mathrm{AC}$,
Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	49 W
Min. output power	21.6 W
Max. output power	42 W
Typ. efficiency (at $230 \mathrm{~V} / 50 \mathrm{~Hz} /$ full load)	86 \%
λ (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	0.97
Output current tolerance ${ }^{(2)}$	± 7.5 \%
Max. output current peak ${ }^{(3)}$	1,185 mA
Max. output voltage (U-OUT)	60 V
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< 15 \%
Output LF current ripple ($<120 \mathrm{~Hz}$) ${ }^{(2)}$	$\pm 5 \%$
Output $\mathrm{P}_{\text {St }} \mathrm{LM}$ (at full load)	≤ 1
Output SVM (at full load)	≤ 0.4
Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$<0.5 \mathrm{~s}$
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< 0.5 s
Hold on time at power failure (output)	0 s
Ambient temperature ta (at lifetime 50,000 h)	$35^{\circ} \mathrm{C}$
Storage temperature ts	$-40 \ldots+80^{\circ} \mathrm{C}$
Mains surge capability (between $L-N$)	1 kV
Mains surge capability (between L/N-PE)	2 kV
Burst / surge peaks output side against PE	< 3.5 kV
Lifetime	up to 100,000 h
Guarantee (conditions at www.tridonic.com)	5 years
$\underline{\text { Dimensions L } \times W \times \mathrm{H}}$	$168 \times 46 \times 32 \mathrm{~mm}$

Ordering data

Type	Article number	Colour	Packaging, carton	Packaging, low volume		
LC 42/900-1050/40 flexC T-B SNC3 volume	$\mathbf{8 7 5 0 1 0 1 4}$	Black	$10 \mathrm{pc}(\mathrm{s})$.	$50 \mathrm{pc}(\mathrm{s})$.	$850 \mathrm{pc}(\mathrm{s})$.	0.114 kg
LC 42/900-1050/40 flexC T-W SNC3	$\mathbf{8 7 5 0 1 0 3 5}$	White	$10 \mathrm{pc}(\mathrm{s})$.	$50 \mathrm{pc}(\mathrm{s})$.	$850 \mathrm{pc}(\mathrm{s})$.	0.114 kg
LC 42/900-1050/40 flexC T-G SNC3	$\mathbf{8 7 5 0 1 0 3 9}$	Grey	$10 \mathrm{pc}(\mathrm{s})$.	$50 \mathrm{pc}(\mathrm{s})$.	$850 \mathrm{pc}(\mathrm{s})$.	0.114 kg

Specific technical data

Type	Output current ${ }^{(4)}$	Min. forward voltage	Max. forward voltage	Max. output power	Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Typ. current consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Max. casing temperature tc	Ambient temperature ta max.	lout select
LC 42/900-1050/40 flexC T SNC3	900 mA	24 V	42 V	37.8 W	43.5 W	195 mA	$75^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=off / 2=off
	950 mA	24 V	42 V	39.9 W	46.0 W	205 mA	$75^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=off / $2=0$ n
	1,000 mA	24 V	42 V	42.0 W	49.0 W	220 mA	$80^{\circ} \mathrm{C}$	$-20 \ldots+35^{\circ} \mathrm{C}$	1=on / 2=off
	1,050 mA	24 V	40 V	42.0 W	49.0 W	220 mA	$80^{\circ} \mathrm{C}$	$-20 \ldots+35{ }^{\circ} \mathrm{C}$	1=on / 2=on

[^0]in-track fixed output

Product description

- Optional threaded sleeve for luminaire mounting
- Suitable for S-9009/D-M10 threaded nut
- Additional mounting equipment, e.g. M13x1 available at AAG Stucchi (http://www.aagstucchi.it/en/)

Ordering data

| Type | Article number | Packaging, bag | Weight per pc. |
| :--- | :--- | :--- | :--- | :--- |
| ACU ALU NIPPLE M10x1 | $\mathbf{2 8 0 0 2 3 9 8}$ | $100 \mathrm{pc}(\mathrm{s})$. | 0.007 kg |

1. Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 61000-4-4
EN 61000-4-5

1.1 Glow-wire test

According to EN 61347-1 with increased temperature of $850^{\circ} \mathrm{C}$ passed.

2. Thermal details and lifetime

2.1 Expected lifetime

Expected lifetime				
Type	Output current	ta	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{3 5}{ }^{\circ} \mathbf{C}$
LC 42/900-1050/40 flexC T SNC3	900 mA	Lifetime	$>100,000 \mathrm{~h}$	$>50,000 \mathrm{~h}$
	950 mA	Lifetime	$>100,000 \mathrm{~h}$	$>50,000 \mathrm{~h}$
	$1,000 \mathrm{~mA}$	Lifetime	$>100,000 \mathrm{~h}$	$>50,000 \mathrm{~h}$
	$1,050 \mathrm{~mA}$	Lifetime	$>100,000 \mathrm{~h}$	$>50,000 \mathrm{~h}$

The LED drivers are designed for a lifetime stated above under reference conditions and with a failure probability of less than 10%.

Temperatures were measured with Tracktype PRO-310 from manufacturer powergear. Temperatures can deviate with tracks from other manufacturers.

3. Installation / wiring

3.1 Circuit diagram

3.2 Wiring type and cross section

For wiring use stranded wire with ferrules or solid wire from $0.5-1.5 \mathrm{~mm}^{2}$. Strip 8.5-9.5 mm of insulation from the cables to ensure perfect operation of the push-wire terminals.
Use one wire for each terminal connector only.

3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

3.4 Fixing conditions

Dry, acidfree, oilfree, fatfree. It is not allowed to exceed the maximum ambient temperature (ta) stated on the device.

3.5 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Max. length of output wires is 20 cm .
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

3.6 Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 30 seconds
4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

3.7 Mounting luminaire

Max. allowed weight of complete luminaire: 5 kg (50 N)

3.8 Compatible tracks

Subject to be changed without notice.

Manufacturer	Type	System	Intrack casing colour
EUTRAC	$25-X X-X X / 26-X X-X X$	$3 P$	Black, grey
GGuzzini	$6771-6774$	$3 P$	Black, grey
GGuzzini	$6779-6782$	$3 P$	Black, grey
IVELA	$7501 / 7511 / 7512$	$3 P$	Black, grey
LUMISYS UNIPRO	T32 / T33 /34	$3 P$	Black, grey
LUMISYS UNIPRO	T32F / T33F /34F	$3 P$	Black, grey
NORDIC ALUMINIUM	GLOBAL Trac Pro XTS 4xxx	$3 P$	Black, white, grey
NORDIC ALUMINIUM	GLOBAL Trac Pro XTSF 4xxx	$3 P$	Black, white, grey
ZUMTOBEL	S280...	$3 P$	Black, grey
ERCO	$783 . .$.	$3 P$	Black, grey
SIDE	25101	$3 P$	Black, grey
PHILIPS	RCS350 3C	$3 P$	Black, grey
FOSNOVA	OMNITRACK	$3 P$	Black, grey
Stucchi	One track	$3 P$	Black, white, grey
Powergear	PRO-04X0	$3 P$	Black, grey
Unipro	T32W	3P	Black, grey
Unipro	T32FW	$3 P$	Black, grey

Tests have been done with in-tracks taken from the market in the first half of 2020 .

Tridonic has no control or responibility on any future or past possible changes made by different manufactures that could affect the compatiblity between tracks and adapters.

3.9 Adapter mounting into the track

Insert the adapter into the track, so that the mechanical key (A) in the adaptor matches the groove (B) in the track. Rotate of about 90° the lever of the cam (C) until it reachs the locking position.
To open rotate the lever the opposite direction.

3.11 Current setting

Set the current by DIP switch after mains off Use of DIP switch only after mains off.

900 mA : Switch 1 = Off, Switch 2 = Off

950 mA : Switch 1 = Off, Switch 2 = On

1,000 mA: Switch $1=$ On, Switch 2 = Off

1,050 mA: Switch $1=0 n$, Switch $2=$ On
 the phase (L1, L2 or L3) to distribute the single luminaires in the system, by means of the proper selector (A) of the adaptor.

4．Electrical values

4．1 Efficiency vs load

4．2 Power factor vs load

4．3 THD vs load

THD without harmonic $<5 \mathrm{~mA}(0.6 \%)$ of the input current：

[^1]
4.6 Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation Ø	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	1 max	Time
LC 42/900-1050/40 flexC T SNC3	36	45	58	72	36	45	58	72	5 A	$50 \mu \mathrm{~s}$

These are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker. Calculation uses typical values from ABB series 5200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.
4.7 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

	THD	3.	5	7.	9.	11.
LC 42/900-1050/40 flexC T SNC3	<15	<15	<10	<5	<5	<3

Acc. to 6100-3-2. Harmonics $<5 \mathrm{~mA}$ or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD.

5. Functions

5.1 Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED driver switches off. After elimination of the short-circuit fault the LED driver will recover automatically.

5.2 No-load operation

The LED driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.3 Overload protection

If the maximum load is exceeded by a defined internal limit, the LED driver will protect itself and LED may flicker. After elimination of the overload the nominal operation will recover automatically.

6. Miscellaneous

6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ dC). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity: $\quad 5 \%$ up to max. 85%, not condensed (max. 56 days/year at 85%)

Storage temperature: $-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$
The devices have to be within the specified temperature range (ta) before they can be operated.

6.3 Maximum number of switching cycles

All LED driver are tested with 50,000 switching cycles.

6.4 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data
Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.

[^0]: (1) Maximum of perception and reaction" and let go" values according to EN 60598-1.
 (2) Test result at $25^{\circ} \mathrm{C}$
 ${ }^{3}$ Test result at max. current.
 (4) Output current is mean value.

[^1]: 900 mA
 ー ー ー — 950 mA
 －－－－－－ 1000 mA
 ———．—． 1050 mA

